Genetic Algorithms as Global Random Search Methods
نویسندگان
چکیده
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is ar_md that tim similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions aml then exploiting their similarities. Proportional selection is characterized a.s a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search bre,_lth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
منابع مشابه
A Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملSolving the Ride-Sharing Problem with Non-Homogeneous Vehicles by Using an Improved Genetic Algorithm with Innovative Mutation Operators and Local Search Methods
An increase in the number of vehicles in cities leads to several problems, including air pollution, noise pollution, and congestion. To overcome these problems, we need to use new urban management methods, such as using intelligent transportation systems like ride-sharing systems. The purpose of this study is to create and implement an improved genetic algorithms model for ride-sharing with non...
متن کاملRandom Search Algorithms
Random search algorithms are useful for many ill-structured global optimization problems with continuous and/or discrete variables. Typically random search algorithms sacrifice a guarantee of optimality for finding a good solution quickly with convergence results in probability. Random search algorithms include simulated annealing, tabu search, genetic algorithms, evolutionary programming, part...
متن کاملGenetic and other global optimization algorithms - comparison and use in calibration problems
Many issues related to water resources require the solution of optimization problems. If the objective function is not known analytically, traditional methods are not applicable and multi-extremum (global) optimization (GO) methods must be used. In the present paper a brief overview of GO methods is given and nine of them are compared in terms of effectiveness (accuracy), efficiency (number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolutionary Computation
دوره 3 شماره
صفحات -
تاریخ انتشار 1995